「高圧水素タンクの充填時検査技術の開発」

3年間(2021-2023年)の3年目終了

金属·物性科 工藤弘行 佐藤浩樹

<u>研究背景(タンク点検の難しさ)</u>

昨年度までの成果(点検技術の構築) 「点検技術本線」 「強度試験」

① DIC画像処理(タンクの欠陥検知技術)

・タンク試験片の製作 ・水圧試験時のDIC亀裂検知

① 強度試験(水素環境下での疲労寿命予測技術)

- ・中空試験片法による水素環境下疲労試験(仙台高専)
- ・上記試験のCAEで、疲労寿命データ評価手法の検討

③ 健全性評価(CAE破壊力学)

昨年度までで完了

・利用シナリオの想定、実用化の相手探し

<u>実験方法① DIC画像処理による</u>欠陥検知技術)

DIC(デジタル画像相関法) 数十画素四方の「サブセット」を単位に、 変形前後の画像から、 高精度に「変位」、「ひずみ」測定する技術

※ 当所では10年前に導入。

緑色が「サブセット」

具体的な亀裂検知方法として2つ提案済み(2019)

A案:コンプライアンス法

荷重一変位グラフの傾き の変化からき裂を検知する方法 B案:DICき裂検知

き裂部周辺の不均質なひずみ分布から き裂の場所を特定

縦方向

引張

タンク試験体の製作(設計)

DIC撮影しやすい板厚をCAEで計算し 1mm に決定。 一部2mmに変更。使用する造形機では0.5mmより薄い寸法は造形できないため。

市販のサンプルシリンダの形状を参考に。

疲労試験片も 同時に造形 (将来のため)

タンク試験体の製作 (造形サンプルの確認)

・外観写真 → 寸法もほぼCAD通り

内面亀裂 a/w= 0,0.25,0.5,0.75

(坂内君撮影)

内面亀裂 a/w = 0.5

円周断面

水圧試験(試験機材・試験方法) 担当:佐藤浩 ポンプ 最大 30MPa に対して、10MPa狙い

実験結果① DIC画像処理による欠陥検知技術 (C00)

3つの BOXカーソル を配置

3つの BOXカーソルの 「ひずみ」の 経時変化グラフ

ΜΑΧ1600με

<u>実験結果① DIC画像処理による欠陥検知技術(C00)</u>

⇒ A案 コンプライアンス法に とって十分な精度がある。

<u>実験結果② C50・亀裂と分布の位置関係</u>

CAE結果① COO W 奥行方向変位

29.7 μm 32 μm

分布も絶対値もほぼ同じ、 水圧試験も、DIC測定も妥当

カラーコンタースケール MIN -200 με MAX 450 με

極小値だけでなく、 周辺の局所的な極大値も合致

カラーコンタースケール MIN 50 με MAX 200 με

極小値だけでなく、 周辺の特徴的な分布も合致

レンズ	焦点距離 17mm レンズ					
距離	約40cm(図18、19)			約60cm(図15)		
	前後方向	X 方向	Y方向	前後方向	X 方向	Y方向
	変位	ひずみ	ひずみ	変位	ひずみ	ひずみ
	[µm]	[με]	[με]	[µm]	[με]	[με]
平均値	34.60	283	1374	408	382	1592
標準偏差	0.47	38.6	48.9	1.85	36.6	52.0
最大値	35.74	202	1471	34.99	478	1775
最小値	33.14	379	1261	23.66	301	1450
変動率	1.36%	13.64%	3.56%	0.45%	9.58%	3.27%

まとめ

★ DICによるタンク試験片の亀裂検知

- ・A案 コンプライアンス法に必要な精度がある。
- ・0.5、 0.75は、B法 不均一分布による検知ができた。