通信障害に強い無線通信ネットワークの製造現場適用化研究(第2報)

Research of wireless communication network tolerant to network disturbances for applying manufacturing site.

電子・機械技術部 電子・情報科 柿崎正貴 三瓶史花 鈴木健司 山田昌幸 南相馬技術支援センター 機械加工ロボット科 三浦勝吏

製造現場における LPWA 無線の通信特性を明らかにするため、通信特性評価と、実証実験 へ向けた IoT システム構築を行った。Wi-Fi HaLow の電波伝搬特性を明らかにし、LPWA 無 線通信における電波伝搬特性は、通信規格の違いによる影響が非常に小さいことが分かっ た。また、ハイテクプラザ施設内に Wi-SUN FAN ネットワークを構築し、受信信号強度 RSSI[dBm]やパケットエラーレート PER[%]を測定することで、実環境における電波伝搬やネ ットワーク経路最適化、及びネットワークトラフィック輻輳の影響を調査した。さらに、実 証実験へ向けた加工機稼働監視システムの設計・構築を行った。

Key words: 無線通信、ネットワーク、LPWA、Wi-SUN FAN、Wi-Fi HaLow

1. 緒言

製造現場の情報ネットワークには、Wi-Fi (無線 LAN) や有線ケーブル(有線 LAN)が広く利用される。しか し、Wi-Fi は設置が容易で高速なデータ伝送が可能な 反面、電波到達距離が短く、通信範囲が限定される点 や、障害物による電波遮蔽や電磁ノイズによる干渉を 受けて、通信が不安定になる点が課題である。一方、 有線ケーブル敷設は通信安定性・信頼性が高いうえ、 高速なデータ伝送が可能だが、配線の取り回しを考慮 した工場内の機器配置変更や製造ラインの再編成が必 要となる等、導入障壁が高いことが課題である。

そこで近年注目されているのが、長距離通信可能で 電波遮蔽や干渉に強いとされる 920MHz 特定小電力無 線(Low Power Wide Area, LPWA) である。LPWA の通 信規格は多数存在し、通信距離や通信速度等の仕様が メーカから提示されている。しかし、製造現場等の障 害物や電磁ノイズの多い環境下における通信性能は提 示されていない。

本研究では、LPWA 無線通信を製造現場へ適用するための指針を得るため、障害物のある環境等における電波到達性や通信の安定性・耐障害性を評価し、製造現場における LPWA 無線の通信特性を明らかにする。さらに、実証実験として、LPWA を用いた無線通信 IoT システムを構築、実際の製造現場へ導入することで、実現場におけるシステム安定性や耐障害性を評価する。

第1報¹⁾では、LPWA 通信規格「Wi-SUN FAN」につい て、障害物の無い環境における電波伝搬特性を評価し、 電波伝搬の距離減衰特性を明らかにした。また、受信 信号強度に対する通信特性を評価し、安定通信可能な 受信信号強度とデータレートの関係を明らかにした。

本報では新たに、LPWA 通信規格「Wi-Fi HaLow」に ついて、障害物の無い環境における電波伝搬特性を評 価し、Wi-SUN FAN と比較することで、通信規格の違い による電波伝搬特性の変化を調査する。また、ハイテ

事業名「ものづくり企業の AI・IoT 活用促進事業」

クプラザ実験棟内に Wi-SUN FAN 無線モジュールを複 数設置し、電波伝搬特性及び通信信頼性を評価するこ とで、実環境における通信特性を評価する。

さらに、実証実験へ向けて、Wi-SUN FAN 無線モジュ ールを搭載した実験用 IoT デバイスの設計開発、及び 実証実験用 IoT システムの概念設計・構築について報 告する。

2. LPWA 無線通信特性評価

2.1.障害物の無い環境における電波伝搬特性評価 2.1.1.実験

Wi-Fi HaLow 無線モジュールとして、Newracom 社 NRC7292²⁾を搭載した評価用ボード SX-NEWAH-EVK(JP) ³⁾(サイレックス・テクノロジー(株)製)を使用した。 表1に、SX-NEWAH-EVK(JP)の仕様を示す。

測定環境を図1に示す。測定条件は第1報と同様、 障害物の無いアスファルトの路面に送信機と受信機を 設置し、送信機からデータ送信した際の、受信機の受 信信号強度(Received Signal Strength Indicator, RSSI[dBm])を測定した。送受信アンテナ間の距離は、 50[m]間隔で最大 400[m]まで、測定点の±10[cm]、 ±20[cm]の地点で同様の測定を行った。送受信アンテ ナの地面からの高さを同一にしたうえで、アンテナ高

表1 Wi-Fi HaLow 評価ボード SX-NEWAH-EVK (JP)の仕様

規格	IEEE 802.11ah		
周波数	920 MHz 帯		
変調方式	OFDM		
帯域幅	1MHz, 2MHz, 4MHz		
データレート	50 kbps ~ 15MHz		
セキュリティ	WPA2-PSK, WPA3(SAE/OWE)		
消費電流(VDD=3.3V)	98 mA (PEAK) [送信] 40 mA (PEAK) [受信]		
HOSTインターフェース	SPI		

図1 受信信号強度の測定環境

さ 6.0[m]と 1.8[m]の 2パターンで測定した。なお、受 信信号強度 RSSI[dBm]は無線モジュールに接続した Raspberry Pi 4 Model B⁴⁾から iw コマンドを使用し て取得した。

2. 1. 2. 結果·考察

送受信アンテナ間の距離 d[m]に対する RSSI[dBm]を 図 2に示す。第1報より、大地や大気の電波吸収等に よる電波伝搬損失を表す減衰係数を l_1, l_2 とした伝搬損 失 L_e として、以下の式で近似する。ただし、 λ [m]は波 長、d[m]は送受信アンテナ間距離である。

$$L_e[dBm] = l_1 \cdot 20 \log(d) + l_2 \cdot 20 \log\left(\frac{4\pi}{\lambda}\right)$$
$$= \alpha \log(d) + \beta$$
(1)

図2の結果から最小二乗法近似により、それぞれの アンテナ高さにおける電波伝搬の距離減衰特性が得ら れる。

アンテナ高さ
$$6.0[m]$$
:
 $L_e = -15.36 \log(d) - 26.17$ (2)
アンテナ高さ $1.8[m]$:

$$L_e = -31.82\log(d) + 3.65\tag{3}$$

さらに、第1報の結果から、Wi-SUN FAN の電波伝搬 の距離減衰特性は、アンテナ高さ6.0[m]と1.8[m]それ ぞれ以下の式で表される。

アンテナ高さ
$$6.0[m]$$
:
 $L_e = -14.67 \log(d) - 38.49$ (4)
アンテナ高さ $1.8[m]$:
 $L_e = -27.94 \log(d) - 13.76$ (5)

ここで、Wi-Fi HaLow とWi-SUN FAN の電波伝搬特性 について、アンテナ高さ 6.0[m]と1.8[m]それぞれで比 較した図を、図3と図4に示す。Wi-Fi HaLow とWi-SUN FAN で式(1)の切片 β が異なるのは、無線モジュー ルのアンテナ特性や、回路構成の違いによるものと考 えられる。一方、距離減衰率である式(1)の傾き α は、 2つの規格で大きく異なることはなく、特にアンテナ

図4 電波伝搬特性の比較(アンテナ高さ1.8[m])

高さ 6.0[m]の比較では、Wi-Fi HaLow で式(2)より α = -15.36、Wi-SUN FAN で式(4)より α = -14.67となった。 この理由として、2つの規格の搬送波が同じ 920MHz 帯 の電波を使用していることから、搬送波の周波数帯が 距離減衰特性の結果に強く影響したと考えられる。

この結果から、電波伝搬の距離減衰特性は、搬送波 の周波数に大きく依存するため、通信規格の違いや、 変調方式等には依存しないことが分かった。よって、 搬送波に920MHz帯を使用するLPWAの電波伝搬特性は、 通信規格の違いによる影響は非常に小さいと考えられ る。

2. 2. 実環境における通信特性評価

2.2.1.実験

ハイテクプラザ実験棟の図面及び Wi-SUN FAN 無線 モジュールの配置を図5に示す。無線モジュールには、 第1報と同様、ローム(株)BP35C5⁵⁾を搭載した USB 基 板⁶⁾((株)日新システムズ製)に、 $\lambda/2ダイポールアン$ テナを接続して使用した。実験棟及び隣接する機械加 工棟に20個のノード(Wi-SUN FAN 無線モジュールを 搭載した、データ送信を行う子機)を配置し、ボーダ ールータ(Wi-SUN FAN ネットワークを管理する親機で あり、各ノードから送信されるデータの最終到達点) を実験棟から約 23[m]離れた研究管理棟に配置するこ とで、ノード及びボーダールータ間の受信信号強度 RSSI[dBm]を測定した。

ノードの設置場所は、第3章で後述するとおり、加 工機等の設備稼働状態監視を想定して、加工機・試験 機等の側面や上部とした。設置高さは、人手で容易に 設置可能な高さ(2.0[m]以下)とし、実験棟内の鉄製 扉は全て閉めた状態で測定した。

さらに、各ノードからボーダールータへデータを送 信し、ボーダールータで受信したデータパケットのパ ケットエラーレート (Packet Error Rate, PER[%])を 測定した。送信データは第 1 報と同様、ペイロード 4[byte] (32[bit])の UDP パケットを 1[s]間隔で送信 し、無線モジュールのデータレート設定は 50[kbps]と した。

図5 ハイテクプラザ実験棟図面及びノード配置

ノード間の通信経路は、Wi-SUN FAN のルーティング プロトコルである RPL⁷⁾によって自動生成された経路 を使用した。RPL は、マルチホップ通信によるメッシ ュネットワーク構築をサポートするルーティングプロ トコルである。ボーダールータと直接接続できないノ ードは、他のノードを中継(ホップ)することで、ボ ーダールータまでの通信を確立することが可能なプロ トコルである。

2. 2. 2. 結果·考察

ノード間の受信信号強度 RSSI[dBm]及び通信経路を 図6に示す。赤で示したノードは、親機であるボーダ ールータと直接通信したものであり、青で示したノー ドは、他のノードを中継してボーダールータと通信し たノードである。なお、黒で示した2つのノードは、 受信信号強度 RSSI[dBm]が極端に低く、ボーダールー タで認識できなかったノードを示す。これらのノード は、四方をコンクリート壁と鉄製扉で囲まれた場所に 配置したため、電波遮蔽によりボーダールータ及び他 のノードで信号を受信できなかったことから、通信経 路が設定されなかったノードである。また、矢印はノ ード間の送信データ経路で、矢印の向きにデータが流 れていくことで、最終的にボーダールータまで送信デ ータが到達する。

図6から、実験棟内のノードはボーダールータと直 接接続、もしくはノードを1つ中継した通信(1ホッ プ)によって、Wi-SUN FAN ネットワークが確立したこ とを確認した。なお、ノード19は、物理的な最短経路 にあるノード10を中継することで受信信号強度 RSSI[dBm]が最大となるが、ノード9を中継する経路が 設定されている。これは、ノード10を中継するノード が4つ(ノード3、6、13、14)あることから、ネット ワークトラフィックの負荷分散のため、ノード9が中 継機として選択されたと考えられる。その他のノード でも、物理的な最短経路が選択されないケースが見ら れるが、これらも同様に、RPL ルーティングプロトコ ルにより負荷分散された結果と考えられる。

表2に、20個のノードからデータパケットを1[s] 間隔で送信した際の、パケットエラーレート PER[%]を 示す。表中のデータ送信先は、各ノードが直接データ 送信する宛先であり、中継ノード数は、各ノードが中 継機として他のノードからデータ受信するノード数で ある。表2から、直接ボーダールータへデータ送信す るノードの PER[%]が低く、中継器を経由してボーダー ルータへデータ送信するノードの PER[%]が高い傾向 がみられた。

ー方、ボーダールータと直接通信するノード5は、 パケットエラーレートが100[%]となった。これは、ノ ード5とボーダールータ間の受信信号強度 RSSI[dBm] 低下とネットワーク輻輳のためと考えられる。第1報

図6 通信経路及び受信信号強度 RSSI[dBm]

ノード番号	PER[%]	RSSI[dBm]	データ送信先	中継ノード数
1	100.0%	-80.8	中継ノード	
2	100.0%	-83.1	中継ノード	
3	32.5%	-66.7	中継ノード	
4	4.1%	-83.3	ボーダールータ	0
5	100.0%	-87.3	ボーダールータ	3
6	64.4%	-73.7	中継ノード	
7	3.7%	-79.9	ボーダールータ	3
8	18.0%	-45.1	中継ノード	
9	16.6%	-71.2	ボーダールータ	3
10	3.8%	-64.9	ボーダールータ	4
11	19.4%	-71.1	中継ノード	
12	100.0%	-79.1	中継ノード	
13	33.8%	-79.9	中継ノード	
14	51.8%	-81.0	中継ノード	
15	19.9%	-74.3	中継ノード	
16	100.0%	N/A		
17	100.0%	N/A		
18	23.8%	-77.8	中継ノード	
19	18.0%	-78.7	中継ノード	
20	100.0%	-84.0	中継ノード	

より、1対1のデータ送受信ではRSSI[dBm]が-88[dBm] 以上であればパケットロスなく通信可能であったが、 ノード5を中継するノードが3つ(ノード1、2、20) あり、これらのパケットをノード5で中継する必要が あることが、RSSI[dBm]が-87.3[dBm]であるにも関わら ず通信できなかった理由と考えられる。また、ボーダ ールータがすべてのノードから送信される毎秒 4[byte]のパケットを処理しきれず、ボーダールータ側 でパケットロスが発生したことも一因であると考えら れる。

なお、ネットワークトラフィックを減少させた際に 通信が安定するか確認するため、ノードからのデータ 送信時間間隔を 1[s]から 5[s]まで変化させた際のパ ケットエラーレート PER[%]を測定した。結果を図7に 示す。送信時間間隔 2[s]までは PER[%]が 100[%]とな るノードが複数あるが、送信時間間隔 3[s]から PER 100[%]を示すノードがなくなり、送信時間間隔 5[s]で は、全ノードの PER[%]が 10[%]以下となった。

3. 実証実験

3.1. 概要

これまで、Wi-SUN FAN とWi-Fi HaLowの電波伝搬特 性や通信信頼性を評価し、基礎的な通信性能を把握し た。これらの知見をもとに、製造現場等で運用するこ とを想定した無線通信 IoT システムを構築し、実環境 に導入することで、実環境における電波損失やデータ 伝送速度及び伝送遅延、マルチホップメッシュネット ワーク構築による冗長性等、Wi-SUN FAN 無線通信の実 現場における通信信頼性評価を行う。

本実験では、工場等に設置された加工機について、 稼働状況を遠隔監視することを想定し、実証実験用 IoT システムを構築する。図8に、加工機稼働監視 IoT システムの概念図を示す。各々の加工機に Wi-SUN FAN 無線モジュールを搭載した実験用 IoT デバイスを取付 け、加工機の稼働状態(動作中、停止、非常停止等) を無線通信により遠隔地へ伝送する。また、稼働状態

のデータを時系列データベースへ格納するとともに、 ダッシュボード機能により稼働状態をリアルタイムで 表示するシステム構成とした。これにより、遠隔地か ら加工機の稼働状態をリアルタイムで確認できるほか、 加工機の稼働率算出が可能となり、生産計画作成や需 要予測に活用可能となる。

3. 2. 実証実験用 IoT システム構築

3.2.1. デバイス開発

加工機に取り付ける実験用 IoT デバイスは、照度センサを加工機の積層灯に取り付けることで稼働状態を 読み取り、センサデータをマイコンで処理したうえで、 無線モジュールでデータ伝送する設計とした。無線モジュールには BP35C5 搭載 USB 基板、マイコンには Raspberry Pi Pico⁸⁾、センサには波長 550nm に感度の あるフォトトランジスタを使用した。これらを実装し た基板を設計、基板加工機を用いて製作し、3D プリン タで造形した筐体に収めたうえで、マグネットで加工 機側面及び上部に取り付けた。図9に、開発した実験 用 IoT デバイスの外観と、加工機積層灯への取付けの 様子を示す。

3. 2. 2. システム構成

図10に、実証実験用 IoT システムのシステム構成 を示す。製造現場等の加工機に取り付けた IoT デバイ

図9 実験用 IoT デバイス外観と加工機積層灯への取付け

図11 ダッシュボードの表示画面 (デモデータ使用)

スから、管理室等の遠隔地へWi-SUN FAN ネットワークによりデータ伝送し、Wi-SUN FAN ボーダールータで LAN (IP ネットワーク) へ接続する。さらに、IP ルー タを介してデータベースへデータ格納し、ダッシュボ ードからデータベースを参照する。また、IP ルータに 接続した端末からダッシュボードへアクセスし、リア ルタイムの稼働状態や、稼働状態の履歴を確認できる 設計とした。なお、データベース管理システムには MySQL⁹⁾、ダッシュボードはデータ可視化ツールキット である Grafana¹⁰⁾を使用して開発した。開発中のダッ シュボード表示画面を図11に示す。

今後は、本システムの開発・実装を行い、ハイテク プラザ施設内で機能検証を行うとともに、実際の工場 へ導入し、システム安定性や耐障害性を評価する。

4. 結言

本研究では、製造現場における LPWA 無線の通信特性 を明らかにするため、LPWA 無線通信の通信特性評価と、 実証実験へ向けた IoT システム構築を行った。

LPWA 無線通信の通信特性評価では、障害物の無い環 境における電波伝搬特性評価として、Wi-Fi HaLow 無 線モジュールを用いて送受信アンテナ間距離 d[m]に 対する受信信号強度 RSSI[dBm]を測定し、電波伝搬の 距離減衰特性を明らかにした。また、第1報のWi-SUN FAN の距離減衰特性と比較した結果、LPWA 無線通信に おける電波伝搬特性は、通信規格の違いによる影響が 非常に小さいことが分かった。

実環境における通信特性評価として、ハイテクプラ ザ施設内にWi-SUN FAN メッシュネットワークを構築 し、受信信号強度 RSSI[dBm]を測定するとともに、複 数ノードからデータ送信した際のパケットエラーレー ト PER[%]を測定した。結果、RPL ルーティングプロト コルによる負荷分散を考慮したネットワーク経路最適 化を確認し、実環境におけるパケットロス発生の傾向 を確認した。また、データ送信時間を変化させてパケ ットエラーレート PER[%]を測定することで、送信時間 間隔 5[s]では、全ノードの PER[%]が 10[%]以下となる ことを確認した。

さらに、実証実験へ向けた IoT システム構築では、 IoT デバイス設計開発と IoT システム概念設計及びシ ステム構築を行った。

今後は、LPWA 無線通信の電波伝搬特性について、障 害物による遮蔽や回折、干渉等の影響を評価し、製造 現場への LPWA 無線通信導入の指針を得る。また、実証 実験用 IoT システムの開発・実装を行い、ハイテクプ ラザ施設内で機能検証を行うとともに、実際の工場へ 導入し、システム安定性や耐障害性を評価する。

参考文献

- 柿崎正貴, 鈴木健司, 通信障害に強い無線通 信ネットワークの製造現場適用化研究(第1 報), 令和4年度試験研究報告書, 福島県ハ イテクプラザ, https://www.pref.fukushima. lg.jp/uploaded/attachment/579290.pdf, (参照 2024-2-24)).
- 2) "Products | NRC7292", Newracom, https: //nnewraco.com/ja/products/nrc7292(参照 2024-2-24).
- "SX-NEWAH 日本モデル | IEEE 802.11ah(Wi-Fi HaLow[™])対応 SPI 無線 LAN モジュール | サイレックス・テクノロジー株式会社",サ イレックス・テクノロジー(株),https://w www.silex.jp/products/wireless-module/spi /sxnewah (参照 2024-2-24).
- 4) "Raspberry Pi 4 Model B", Raspberry Pi Foundation, https://www.raspberrypi.com /products/raspberry-pi-4-model-b/ (参照 2 024-2-24).
- 5) "BP35C5 : Wi-SUN Module", ROHM Co., Lt d., https://fscdn.rohm.com/jp/products/d atabook/datasheet/module/power_module/sp ecified_low_power/bp35c5-j.pdf, (参照 202 4-2-24).
- 6) "Wi-SUN 搭載 USB 基板", (株) 日新システ ムズ, https://www.co-nss.co.jp/products/ download/catalog/catalog-wisunfan_usbboa rd.pdf, (参照 2024-2-24).
- 7) "RFC 6550 RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks", Inte rnet Engineering Task Force (IETF), http s://datatracker.ietf.org/doc/html/rfc655 0 (参照 2024-2-24).
- 8) "Raspberry Pi Pico", Raspberry Pi Foun dation, https://www.raspberrypi.com/prod ucts/raspberry-pi-pico/ (参照 2024-2-24).
- 9) "MySQL", Oracle, https://www.mysql.com/

jp/ (参照 2024-2-24).

10) "Grafana: The open observability platfo rm | Grafana Labs", Grafana Labs, https: //grafana.com/ (参照 2024-2-24).